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Abstract

Background

Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting about 5 mil-

lion people worldwide with no disease-modifying therapies. We sought blood-based bio-

markers in order to provide molecular characterization of individuals with PD for diagnostic

confirmation and prediction of progression.

Methods and findings

In 141 plasma samples (96 PD, 45 neurologically normal control [NC] individuals; 45.4%

female, mean age 70.0 years) from a longitudinally followed Discovery Cohort based at the

University of Pennsylvania (UPenn), we measured levels of 1,129 proteins using an apta-

mer-based platform. We modeled protein plasma concentration (log10 of relative fluores-

cence units [RFUs]) as the effect of treatment group (PD versus NC), age at plasma

collection, sex, and the levodopa equivalent daily dose (LEDD), deriving first-pass candidate

protein biomarkers based on p-value for PD versus NC. These candidate proteins were then

ranked by Stability Selection. We confirmed findings from our Discovery Cohort in a Replica-

tion Cohort of 317 individuals (215 PD, 102 NC; 47.9% female, mean age 66.7 years) from

the multisite, longitudinally followed National Institute of Neurological Disorders and Stroke

Parkinson’s Disease Biomarker Program (PDBP) Cohort. Analytical approach in the Repli-

cation Cohort mirrored the approach in the Discovery Cohort: each protein plasma concen-

tration (log10 of RFU) was modeled as the effect of group (PD versus NC), age at plasma
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collection, sex, clinical site, and batch. Of the top 10 proteins from the Discovery Cohort

ranked by Stability Selection, four associations were replicated in the Replication Cohort.

These blood-based biomarkers were bone sialoprotein (BSP, Discovery false discovery rate

[FDR]-corrected p = 2.82 × 10−2, Replication FDR-corrected p = 1.03 × 10−4), osteomodulin

(OMD, Discovery FDR-corrected p = 2.14 × 10−2, Replication FDR-corrected p = 9.14 ×
10−5), aminoacylase-1 (ACY1, Discovery FDR-corrected p = 1.86 × 10−3, Replication FDR-

corrected p = 2.18 × 10−2), and growth hormone receptor (GHR, Discovery FDR-corrected

p = 3.49 × 10−4, Replication FDR-corrected p = 2.97 × 10−3). Measures of these proteins

were not significantly affected by differences in sample handling, and they did not change

comparing plasma samples from 10 PD participants sampled both on versus off dopaminer-

gic medication. Plasma measures of OMD, ACY1, and GHR differed in PD versus NC but

did not differ between individuals with amyotrophic lateral sclerosis (ALS, n = 59) versus

NC. In the Discovery Cohort, individuals with baseline levels of GHR and ACY1 in the lowest

tertile were more likely to progress to mild cognitive impairment (MCI) or dementia in Cox

proportional hazards analyses adjusting for age, sex, and disease duration (hazard ratio

[HR] 2.27 [95% CI 1.04–5.0, p = 0.04] for GHR, and HR 3.0 [95% CI 1.24–7.0, p = 0.014] for

ACY1). GHR’s association with cognitive decline was confirmed in the Replication Cohort

(HR 3.6 [95% CI 1.20–11.1, p = 0.02]). The main limitations of this study were its reliance on

the aptamer-based platform for protein measurement and limited follow-up time available

for some cohorts.

Conclusions

In this study, we found that the blood-based biomarkers BSP, OMD, ACY1, and GHR

robustly associated with PD across multiple clinical sites. Our findings suggest that biomark-

ers based on a peripheral blood sample may be developed for both disease characterization

and prediction of future disease progression in PD.

Author summary

Why was this study done?

• No blood tests currently exist that distinguish people with Parkinson’s disease (PD)

from neurologically normal individuals or that predict the rate of disease progression in

people who have already been diagnosed with PD.

• Blood tests that distinguish people with PD would be helpful for confirmation of diag-

nosis (diagnostic biomarkers), whereas blood tests that predict the rate of disease pro-

gression (prognostic biomarkers) would be helpful for clinical trials and clinical care.

What did the researchers do and find?

• We screened more than 1,000 blood-based proteins from 527 people with PD, amyotro-

phic lateral sclerosis (ALS), or neither neurological disease in order to discover new

diagnostic and prognostic biomarkers. We used one group of participants to identify
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potential biomarkers and then used a separate group of participants to confirm these

biomarkers.

• We found that blood levels of four proteins—bone sialoprotein (BSP), osteomodulin

(OMD), aminoacylase-1 (ACY1), and growth hormone receptor (GHR)—consistently

differed in people with PD compared to people without PD.

• We found that lower GHR levels at baseline predicted a faster rate of cognitive decline

in people with PD.

What do these findings mean?

• Levels of some blood proteins consistently differ between people with versus without

PD, and some of these proteins also predict which PD individuals may have faster pro-

gression of disease.

• It may be possible to develop blood-based tests to help confirm PD diagnosis and pre-

dict disease progression.

Introduction

Parkinson’s disease (PD) is characterized by progressive loss of dopaminergic neurons in the

substantia nigra, resulting in a clinical syndrome defined by bradykinesia, rigidity, tremor, and

postural instability [1]. By the time a clinical diagnosis is made, 50% of nigral dopaminergic

neurons may already be lost [2], suggesting a long prodromal phase during which intervention

may be possible. Current medical practice for the diagnosis of PD relies almost entirely on

clinical examination, with no laboratory-based testing available. Although a United States

Food and Drug Administration (FDA)-approved, radioligand-based dopamine transporter

imaging test (DaTSCAN) can confirm degeneration of dopaminergic neurons [3], time and

expense have prevented its widespread adoption in clinical settings, and a positive result is not

diagnostic for PD, because other degenerative neurologic diseases such as multiple systems

atrophy exhibit similar findings. Moreover, even within PD, considerable heterogeneity in

clinical presentation exists, with highly variable rates of both cognitive and motor progression

over time [4]. At present, no clinical or research-based tests exist to predict PD disease pro-

gression, despite widespread recognition that such predictive tools are vital to the field [5].

Thus, the advent of blood-based markers to molecularly define PD individuals and to predict

longitudinal progression in PD could transform clinical practice and the development of dis-

ease-modifying therapies.

To date, biomarker studies in PD have largely focused on candidate approaches, with an

emphasis on protein measures obtained in the cerebrospinal fluid (CSF) [6,7], which is consid-

erably more difficult to obtain than blood in a busy clinical setting. Although a handful of bio-

markers nominated using these candidate approaches consistently differ comparing PD and

control individuals (e.g., CSF measures of total alpha-synuclein [8]), individual marker effect

sizes are small, and the scarcity of robust biomarkers limits the ability to develop multimarker

panels for better discriminatory power. Moreover, the field largely lacks protein biomarkers

that predict cognitive or motor progression across multiple cohorts [7]. Thus, we aimed to dis-

cover novel blood-based biomarkers for differentiation of individuals with PD from control
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individuals, as well as prediction of rate of PD progression. We approached this problem by

screening >1,000 plasma proteins using an aptamer-based platform [9] in a discovery–replica-

tion design.

Methods

To identify biomarkers that might characterize individuals with PD, 1,129 (Discovery Cohort)

and 1,305 (Parkinson’s Disease Biomarker Program [PDBP] Replication Cohort) plasma pro-

teins were screened from 527 individuals, and their clinical data were analyzed (Fig 1). The

clinical data and plasma samples were acquired from the University of Pennsylvania (UPenn)

Udall Cohort (Discovery Cohort) and from a multisite PDBP Replication Cohort (Table 1).

The study consisted of three major steps: (1) differentiation of PD from neurologically normal

control (NC) participants (96 PD, 45 NC) in a single-site Discovery Cohort, using levels of 968

proteins that passed quality control (QC) metrics, obtained by an aptamer-based platform

assay; (2) independent replication of the top biomarker candidates from step 1 in a multisite

Replication Cohort (215 PD, 102 NC participants); and (3) prediction of PD progression using

the biomarker candidates that replicated across the single-site Discovery Cohort and multisite

Replication Cohort. These steps are summarized in Fig 1, parts of which were created with

Biorender.com. The data were normalized, processed, and analyzed using the statistical soft-

ware R [10]. This study is reported as per the Strengthening the Reporting of Observations

Studies in Epidemiology (STROBE) guidelines (S1 STROBE Checklist). At study outset, the

analysis plan (S1 Analysis Plan) was to flexibly investigate the Discovery Cohort and then per-

form an analysis mirroring the Discovery Cohort analysis in the Replication Cohort, with the

two additional covariates of clinical site and batch, if site or batch effects were observed in the

transition from a single-site/single-batch discovery phase to a multisite/multibatch replication

phase. The ultimate analysis plan only differed from the predetermined plan in that the levo-

dopa equivalent daily dose (LEDD) was not included as a covariate in the Replication Cohort

when we found that not all PDBP PD participants had available LEDD data. Detailed methods

are described below.

Cohorts and sample collection

UPenn Udall Discovery Cohort. During the period between 2013 and 2015, blood plasma

samples and clinical data were collected from 97 PD individuals and 45 NCs enrolled to partic-

ipate in research approved by the UPenn Institutional Review Board (IRB). All PD individuals

met the diagnostic criteria of the United Kingdom Parkinson’s Disease Brain Bank [9] and

were part of a longitudinal, extensively characterized cohort at UPenn [11]. In order to control

for environmental biases, we ensured that PD and control groups did not differ by age or sex,

and NCs were recruited primarily from the unaffected spouses of PD individuals from the

same clinic. Samples were acquired according to IRB-approved protocols as previously

described by Chen-Plotkin and colleagues [12]. Written informed consent was obtained at

study enrollment. One PD sample had outlier values in preprocessing and normalization steps

on the aptamer-based assay and was excluded from further analyses. A total of 96/97 PD and

all NC samples passed our QC criteria (see Preprocessing and QC of SOMAScan protein

data for description of preprocessing and normalization) and were included in subsequent

analyses.

Multisite PDBP Replication Cohort. Results were tested in a Replication Cohort in

order to account for possible environmental and technical biases in our analysis. The Replica-

tion Cohort blood samples (collected in the period between 2013 and 2015) and clinical data

were obtained from the PDBP Cohort [13], originating from research participants seen at two
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Fig 1. Overview of study. We used SOMAScan 1.1k (left panel) and 1.3k (right panel) assays to quantify plasma protein levels in the Discovery and

Replication Cohorts, respectively. Multiple linear regression models revealed 140 proteins that differed in PD versus NC individuals in the Discovery

Cohort (p< 0.005). Stability Selection with LASSO was then used to rank the 140 candidate proteins from the Discovery Cohort, obtaining the top 10

most robust and stable proteins. Four (ACY1, BSP, GHR, OMD) of these 10 proteins differed in PD versus NC samples in the Discovery Cohort and

also differentiated PD versus NC in the Replication Cohort (middle panel, 1). These were tested for specificity for PD (2), influence of dopaminergic

medication or sample handling (3, 4), and ability to predict subsequent rates of cognitive decline (5). ACY1, aminoacylase-1; ALS, amyotrophic lateral

sclerosis; BSP, bone sialoprotein; GHR, growth hormone receptor; LASSO, least absolute shrinkage and selection operator; MCI, mild cognitive

impairment; NC, neurologically normal control; OMD, osteomodulin; PD, Parkinson’s disease; PDBP, Parkinson’s Disease Biomarker Program.

https://doi.org/10.1371/journal.pmed.1002931.g001

Characterization of Parkinson’s disease using blood-based biomarkers

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002931 October 11, 2019 5 / 22

https://doi.org/10.1371/journal.pmed.1002931.g001
https://doi.org/10.1371/journal.pmed.1002931


PDBP sites: Penn State University (Penn State, 100 PD and 78 NC) and the University of

Texas Southwestern Medical Center (UTSW, 115 PD and 24 NC). One PD participant from

UTSW and two NC participants from Penn State were excluded from analyses because of out-

lier measurements for a high proportion of SOMAScan proteins. Longitudinal follow-up with

cognitive testing by the Montreal Cognitive Assessment (MoCA) was additionally obtained,

and associations with biomarker levels analyzed, for UTSW PD participants. Each PDBP Cen-

ter’s local IRB approved study protocols, and all participants were consented for the study.

Ethics statement for human participant research. For the Discovery Cohort, the IRB of

UPenn approved the human participant research in this study. Written informed consent was

obtained from Discovery Cohort participants. For the Replication Cohort, each PDBP Center’s

local IRB approved study protocols, and all participants provided written informed consent

for participation in PDBP. As one goal of the PDBP is to provide a biorepository of samples

from a well-characterized set of individuals, participants consented to sharing of samples and

deidentified data with investigators approved by the Biospecimen Review Access Committee

at the time of enrollment.

Pooled reference samples. To investigate the effect of plasma handling on detected bio-

marker level, multiple identical aliquots of pooled plasma samples from the Discovery (UPenn

Table 1. Demographic characteristics of study participants.

Penn Udall

Discovery Cohort

PDBP Replication Cohort

(Penn State and UTSW)

Penn ALS BioFIND

Disease group PD NC PD NC ALS� ON OFF

Participants total 96 45 215 102 59 10

Female/Male 42/54 22/23 101/114 51/51 26/33 5/5

p-Value 0.59a 0.76c N/A

Age at plasma sampling

mean ± SD (years)

69.9 ± 7.52 70.2 ± 10.04 66.8 ± 8.6 66.1 ± 10.5 61.9 ± 10.5 73.5 ± 6.13

p-Value 0.65b 0.84e (PD versus NC) N/A

0.02e (ALS versus NC); 0.002e (ALS versus PD)

Collection site number N/A N/A 215 102 N/A N/A

Penn State/UTSW 100/115 78/24

p-Value N/A N/A < 0.01a N/A N/A

Blood samples storage at −80 ˚C

mean ± SD (years)

1.44 ± 0.88 1.43 ± 1.53 3.62 ± 0.54 3.46 ± 0.72 5.15 ± 2.01 3.26 ± 0.76 3.24 ± 0.76

p-value 0.977d 0.33e (PD versus NC) 0.943d

<0.001e (ALS versus PD and ALS versus NC)

Somalogic plate number N/A N/A 215 102 N/A N/A

Batch 1/2/3/4/5 49/49/48/48/21 21/20/24/24/13

p-Value N/A N/A 0.88c N/A N/A

Baseline DRS (UPenn) or MoCA (UTSW) mean ± SD 136.95 ± 9.96 N/A 26.47 ± 2.58‡ N/A N/A

aFisher exact test.
bMann-Whitney test.
cChi-squared test.
dt test.
eTukey HSD test.
‡ For 110 UTSW participants with PD considered for longitudinal analyses.

Abbreviations: ALS, amyotrophic lateral sclerosis; DRS, Mattis Dementia Rating Scale-2; HSD, honest significant difference; MoCA, Montreal Cognitive Assessment;

NC, neurologically normal control; PD, Parkinson’s disease; PDBP, Parkinson’s Disease Biomarker Program; SD, standard deviation; UPenn, University of

Pennsylvania; UTSW, University of Texas Southwestern Medical Center

https://doi.org/10.1371/journal.pmed.1002931.t001
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reference pool) and Replication Cohorts (PDBP reference pool) were used. The UPenn refer-

ence pool was prepared by mixing samples from 450 PD and NC individuals. The PDBP refer-

ence pool included plasma samples from 13 PD and NC individuals. For these studies, one

aliquot was assayed by SOMAScan directly, whereas an identical aliquot was subjected to incu-

bation at room temperature for 30 minutes, followed by an extra freeze–thaw cycle, before

assaying by SOMAScan.

BioFIND Cohort samples. The effect of levodopa therapy on plasma protein concentra-

tion was tested on 10 randomly selected PD individuals (5 females and 5 males above 50 years

of age) from the BioFIND Cohort (Table 1) [14]. Plasma samples from the BioFIND Cohort

were collected at two different visits: at baseline (when PD individuals had samples collected

while taking their usual dopaminergic medication—i.e., ON medication) and 2 weeks after the

baseline visit (when PD individuals had samples collected after an overnight washout of dopa-

minergic medication—i.e., OFF medication), as described by Kang and colleagues [14]. All

study protocols and recruitment strategies for BioFIND were approved by the IRBs for the

University of Rochester Clinical Trials Coordination Center (CTCC) and individual clinical

sites.

Protein quantification

Samples from the Discovery and Replication Cohorts were assayed using the 1.1k and 1.3k

Assay versions of the SOMAScan platform (Somalogic, Boulder, CO, USA [9]) in two separate

runs, with operators blinded to disease status. This platform is based on protein-capture slow

off-rate modified aptamers (SOMAmers), which are chemically modified oligonucleotides

with specific affinity to recombinant protein targets, developed by in vitro selection (SELEX)

as previously described [15,16].

The specific steps of the SOMAScan assay have been described in detail in prior

publications [9,17,18], as well as technical white papers at www.somalogic.com. In brief,

plasma samples were incubated with reagent mixes containing SOMAmers to allow for equi-

librium binding of fluorophore-tagged aptamers to their protein targets. Next, a series of

partitioning and washing steps were used to capture only SOMAmers that were bound to

their cognate proteins. Finally, the protein-bound oligonucleotides were released from the

protein complex, captured by complementarity, and quantified using DNA hybridization

arrays.

To adjust for technical biases, the hybridization arrays were normalized and calibrated

using data from a reference set of pooled plasma samples that was run with each batch. Raw

Somalogic data in relative fluorescence units (RFUs) were log10-transformed prior to analysis.

A total of 142 plasma samples (97 PD and 45 NC) from the Discovery Cohort were assayed for

1,129 proteins (1.1k Assay), and 320 plasma samples (216 PD and 104 NC) from the Replica-

tion Cohort were assayed for 1,305 proteins (1.3k Assay). The Replication Cohort samples

were assayed in batches of 85, distributed in five different plates, along with plasma reference

pool samples, 59 amyotrophic lateral sclerosis (ALS) samples from the UPenn biorepository,

and 20 samples from the BioFIND biorepository.

Preprocessing and QC of SOMAScan protein data

Plasma samples from the Discovery and Replication Cohorts were assayed in separate Somalo-

gic runs. Discovery Cohort plasma samples were analyzed, along with 13 plasma calibrator

samples, hybridization controls, and two buffer control samples. The reference pool samples

(n = 8), Penn Udall ALS samples (n = 59), and BioFIND samples (n = 20 from 10 individuals

with PD) were assayed along with plasma samples from the Replication Cohort.
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Run QC standards were derived from metrics obtained during assay development, and pre-

processing and normalization methods are described in detail in a technical white paper [19].

In brief, sample data were first normalized to eliminate hybridization artifacts, using “spiked

in” hybridization controls. Median normalization was subsequently applied for each sample to

remove other intraplate biases. For the SOMAScan assay, the hybridization control and

median scale factors are expected to be in the range of 0.4–2.5 (±1.32 on log2 scale). All samples

had hybridization scale factors in the acceptable range, except one PD sample from the Discov-

ery Cohort, which was excluded from downstream analyses.

In the next step, two QC criteria were implemented to filter SOMAScan protein data. The

overall intraplate technical variability of SOMAScan assay was assessed by using three QC

samples (identical aliquots from three different reference sample pools) run in triplicate (for a

total of nine samples). These three sets of triplicates were placed randomly within the batches

of biological samples in order to capture intraplate variability. The coefficients of variation

(CVs) from these three sets of triplicate QC samples were calculated (i.e., for each protein,

three CVs were calculated) using the raw Somalogic data (in RFUs). Proteins showing CVs

greater than 0.2 from any one of the triplicates were excluded from downstream analyses.

There were 36 and 33 proteins in the Discovery and Replication Cohorts, respectively, with

CV> 0.2 in at least one of three runs (S1 Fig). The second filter, which involved removing pro-

teins with >25% measurements outside of the lower limit of detection (LLOD) or upper limit

of detection (ULOD), was applied to the Discovery Cohort only, as limits of detection were

not provided for subsequent versions of the SOMAScan. This resulted in elimination of an

additional 125 proteins (S1A Fig), leaving a total of 968 Discovery Cohort proteins for down-

stream analyses.

Data processing and cross-sectional statistical analyses

Nomination of proteins that differed in PD versus NC group. To detect proteins whose

plasma concentration associated significantly with disease category (PD versus NC), multiple

linear regression models were employed. In the Discovery Cohort, each protein plasma con-

centration (log10 of RFU) was modeled as the effect of treatment group (PD versus NC), age at

plasma collection, sex, and the LEDD. A total of 140 candidate biomarkers with p-value of

group effect < 0.005 (PD versus NC) were nominated (S1 Table) for downstream analyses

(hierarchical clustering and Stability Selection) from the Discovery Cohort. False discovery

rate (FDR)-corrected p-values were also derived for these biomarkers using the Benjamini-

Hochberg method [20].

Hierarchical clustering and heatmap generation. A heatmap was generated using the

function heatmap.2 from the R package gplots [21]. Raw Somalogic data (RFUs) were log-

transformed and then centered and scaled. Both participants and proteins were hierarchically

clustered by euclidean distance and average linkage using the hclust function [10].

Stability selection ranking. We performed Stability Selection [22] (variable selection

based on subsampling in combination with least absolute shrinkage and selection operator

[LASSO] [23]) on Discovery Cohort data (96 PD, 45 NC). To rank candidate biomarkers, the

R BioMark package across 100,000 jackknifed iterations [24] was employed. At each iteration,

30% of the proteins and 10% of the samples were left out of the bag, and LASSO was used to

feature-select for variables on the remaining data. The proportion of iterations in which

LASSO reported a nonzero coefficient was used to rank the proteins, generating a list of the

top 10 proteins for evaluation in the Replication Cohort.

Replication Cohort analyses. In the Replication Cohort, each protein plasma concen-

tration (log10 of RFU) was modeled as the effect of group (PD versus NC), age at plasma
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collection, sex, clinical site (UTSW versus Penn State), and batch (five plates). LEDD was

not included as a covariate in the Replication Cohort when we found that not all PDBP PD

participants had available LEDD data in the PDBP Data Management Resource. Analyses

focused on the top 10 proteins from the Discovery Cohort, as ranked by Stability Selection;

p-values were corrected for multiple hypothesis testing using the Benjamini-Hochberg

method [20]. For the four validated proteins, a similar analysis was repeated including 59

ALS participants. Protein plasma concentration (log10 of RFU) was modeled as the effect of

disease group (NC, PD, or ALS), age at plasma collection, sex, and clinical site. Disease

group coefficients were extracted, and p-values were adjusted using the Benjamini-Hoch-

berg method.

Testing the effects of levodopa therapy. To test the effect of levodopa therapy on plasma

protein levels (log10 of RFU), a paired t test was applied to each of the proteins assayed. Nomi-

nal (unadjusted) paired t test p-values are presented in S5 Table. In addition, analyses were

repeated, and p-values were obtained by paired permutation testing, which avoids assumptions

of normality. Results were unchanged (S2 Fig).

Associations with cognition. Spearman’s rank-order correlation was calculated for base-

line Mattis Dementia Rating Scale-2 (DRS) and biomarker (log10 of RFU) levels using the R

function cor.test [10]. p-Values were adjusted for FDR by the Benjamini-Hochberg method

using the R function p.adjust [10].

PD progression analysis

Linear mixed-effects model analysis. Linear mixed-effects models were fitted to deter-

mine the effect of biomarker level on the rate of cognitive decline using the R package nlme

[25]. In the Discovery Cohort, only participants with DRS scores measured within 6 months of

the blood draw as well as at least one subsequent DRS score were included (n = 91), for an

average follow-up period of 3.5 years. Our model incorporated DRS as the response variable,

with age, sex, disease duration, baseline DRS, and the time-by-protein interaction as fixed

effects and participant as a random effect. The same analysis was repeated adjusting for years

of education as an additional fixed effect. The time-by-protein interaction coefficients were

extracted, and the p-values for the interaction term were adjusted for FDR by the Benjamini-

Hochberg method using the R function p.adjust [10].

Survival analysis. In both the Discovery and Replication Cohorts, individuals were

divided into low-, medium-, or high-biomarker groups based on (log10 of RFU) biomarker ter-

tiles. For the Discovery Cohort, we extracted cognitive diagnoses based on clinical consensus

diagnosis as previously described [11], and PD individuals with either a cognitive diagnosis of

dementia at baseline or a diagnosis coded as normal following a baseline diagnosis of mild cog-

nitive impairment (MCI) were excluded from the analysis, leaving 86 individuals for survival

analysis. Events were defined as conversion from normal to MCI, normal to dementia, or MCI

to dementia, for a total of 38 events. For the Replication Cohort, cognitive categorization was

based on published MoCA norms (MoCA 26–30 = normal, MoCA 21–25 = MCI, and MoCA

20 or less = dementia) [26], and events were defined and participants with PD filtered in the

same way as for the Discovery Cohort, for a total of 26 events observed in 74 individuals (fol-

lowed for an average of 2.8 years). Survival analysis was carried out in R using the survival [27]

package. Cox proportional hazards analyses were performed using the function coxph [27] to

test whether biomarker tertile groups have an effect on the likelihood of an event, adjusting

for age, sex, and disease duration. Analyses were repeated including years of education as an

additional covariate. Results were visualized as Cox regression–adjusted curves or forest plots

using the ggadjustedcurves and ggforest functions from the R survminer package [28]. Models
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with and without education were compared using the anova.coxph function from the R sur-

vival package [27].

Results

Discovery screen for plasma proteins differentiating PD from NC

From the original set of 1,129 proteins assayed in the single-site Discovery Cohort, 968

(85.7%) met QC standards (S1 Fig and S1 Table). These 968 proteins were retained for down-

stream analyses.

Proteins differentiating PD from NC samples in the Discovery Cohort were nominated

using a linear model associating concentration of each of these 968 proteins with disease state,

adjusting for LEDD [29], age at plasma draw, and sex, generating an initial candidate list of

140 biomarkers associated at a nominal p-value< 0.005 with PD; correction for multiple

hypothesis testing using the Benjamini-Hochberg method [20] demonstrated that all 140 pro-

teins met the additional criterion of associating with disease state with an FDR-corrected p-

value < 0.05 (S2 Table).

We next performed hierarchical clustering on these candidate markers to evaluate the cor-

relation structure between groups of proteins and disease state. Unsupervised clustering

revealed colinearity among subsets of these proteins, suggesting redundancies and possible

shared relationships among many candidate biomarkers (Fig 2A). We thus employed Stability

Selection [22], a meta-statistical tool that identifies consistently important features by repeated

subsampling of the data, in order to identify the most robust, stable, and sparse set of discrimi-

natory proteins; we ranked candidate biomarkers using the LASSO method across 100,000

jackknifed iterations [23,24]. The top 10 proteins from the Discovery Cohort ranked by Stabil-

ity Selection, shown in Fig 2B and 2C, were advanced for replication.

Replication of biomarker associations with PD in the PDBP Cohort

We next tested our top 10 stability-ranked markers for robustness in a separate Replication

Cohort of 215 PD and 102 NC participants drawn from the multicenter PDBP [13] cohort

(Table 1 and S3 Table). Analytical methods were identical to those used in the Discovery

Cohort except that the Replication Cohort analysis additionally included clinical site and batch

as covariates and did not include LEDD as a covariate, since LEDDs were not universally avail-

able for PDBP participants.

Despite the inevitable introduction of variability from a multisite, multibatch Replication

Cohort, with slight differences in clinical data availability, four of the top 10 proteins that dif-

fered in PD versus NC samples in the Discovery Cohort also differed between PD and NC,

with the same direction of effect, in the PDBP Replication Cohort (Fig 3). These protein bio-

markers were bone sialoprotein (BSP, Discovery FDR-corrected p = 2.82 × 10−2, Replication

FDR-corrected p = 1.03 × 10−4), osteomodulin (OMD, Discovery FDR-corrected p =

2.14 × 10−2, Replication FDR-corrected p = 9.14 × 10−5), aminoacylase-1 (ACY1, Discovery

FDR-corrected p = 1.86 × 10−3, Replication FDR-corrected p = 2.18 × 10−2), and growth hor-

mone receptor (GHR, Discovery FDR-corrected p = 3.49 × 10−4, Replication FDR-corrected

p = 2.97 × 10−3, S4 Table).

Biomarker measures in ALS, a neurodegenerative disease with motor and

cognitive features

To determine whether each of these plasma proteins specifically characterize PD or whether

they are seen across many neurodegenerative disease states, we additionally measured these
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proteins in 59 individuals with ALS (Table 1), a neurodegenerative disease that, like PD, has

both motor and cognitive features. As shown in Fig 3 and corroborated by multiple linear

regression adjusting for age, sex, and clinical site, with the exception of BSP, protein changes

were seen in PD but not in ALS.

Preanalytical variability and biomarker measures

Most individuals with PD are treated with dopaminergic medication, raising the concern that

medication-based effects on the plasma proteome may be driving our biomarker signals. We

addressed this concern in two ways. First, in our PDBP Replication Cohort, a subset of individ-

uals with PD (n = 18) had never been treated with dopaminergic medications. We compared

values of ACY1, OMD, GHR, and BSP in people with PD treated with dopaminergic

Fig 2. Identification of proteins differentiating PD and NC samples in the Discovery Cohort. (A) Heatmap showing the plasma levels of 140

candidate biomarkers differentially expressed (p< 0.005) between PD (n = 96) and NC (n = 45) in the Discovery Cohort (S2 Table). Blue color

indicates lower and red color indicates higher protein expression, with intensities signifying magnitude of the change. Dendrogram clustering on the x-

axis shows participant similarity (PD = navy, NC = gold), whereas clustering on the y-axis groups proteins according to similarity in their expression

profiles. Red arrows indicate top 10 protein biomarkers from the Discovery Cohort. (B) Plot of differentially expressed proteins between PD and NC

group in the Discovery Cohort. The x-axis corresponds to the significance (−log10 p-value) of the difference in protein levels between PD and NC

group, and the y-axis displays the group mean difference between PD and NC (PDmean log10 RFU − NCmean log10 RFU). The top 10 proteins ranked by

Stability Selection are labeled in blue. The vertical dotted line represents the p-value of 0.005. (C) Top 10 proteins as ranked by Stability Selection in the

Discovery Cohort. BSP, bone sialoprotein; PD, Parkinson’s disease; NC, neurologically normal control; OMD, osteomodulin; RFU, relative fluorescence

unit.

https://doi.org/10.1371/journal.pmed.1002931.g002
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Fig 3. Blood-based biomarkers found in both Discovery and Replication Cohorts. Boxplots (median and IQR)

showing the distribution of the top four biomarker protein levels (log10 of RFU) found in both the Discovery and

Replication Cohorts according to diagnosis. The y-axis represents plasma protein levels (log10 of RFU), and the x-axis

displays the diagnostic group, with each dot representing one research participant. In the Replication Cohort, 18 PD

participants had never been treated with dopaminergic medication (pink dots). Biomarker measures for these never-

treated PD participants did not differ from biomarker measures for PD participants treated with dopaminergic

medication (Wilcoxon test nominal p> 0.05). FDR-adjusted (Benjamini-Hochberg method) �p< 0.05, ���p< 0.005.

ACY1, aminoacylase-1; ALS, amyotrophic lateral sclerosis; BSP, bone sialoprotein; FDR, false discovery rate; GHR,

growth hormone receptor; OMD, osteomodulin; PD, Parkinson’s disease; NC, neurologically normal control; RFU,

relative fluorescence unit.

https://doi.org/10.1371/journal.pmed.1002931.g003
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medication versus those never treated with dopaminergic medications, and we found no sig-

nificant differences (Wilcoxon test nominal p-value > 0.05 for all four proteins comparing PD

treated versus not treated with dopaminergic medication, Fig 3). Second, we investigated sam-

ples from an additional multisite cohort—the BioFIND Study [14]—in which PD participants

had blood drawn in two settings: (1) while on their customary dopaminergic medications and

(2) after overnight washout of medication (S5 Table). Although some plasma proteins may be

affected by medication state, none of our four biomarker proteins changed substantially when

comparing ON medication and OFF medication states in the same individual (Fig 4A, S2 Fig).

To understand whether candidate protein biomarkers are robust to common sources of

preanalytical variability, we investigated identical aliquots of pooled plasma samples from the

Discovery Cohort (UPenn reference samples pool) and the PDBP Cohort (PDBP reference

samples pool) that were subjected to differences in sample handling (with versus without 30

minutes at room temperature followed by an additional freeze–thaw of the sample). Whereas

some proteins changed their levels by >30% based on differences in sample handling, none of

our top proteins changed substantially in either pool (Fig 4B and 4C, S5 Table).

GHR, ACY1, and OMD as predictors of cognitive decline

We next asked whether baseline levels of our candidate biomarkers predicted disease progres-

sion. Because cognitive symptoms are less affected by dopaminergic medication than motor

symptoms, and because decline in cognition is variable but clinically important in PD [30], we

investigated whether baseline levels of BSP, OMD, ACY1, or GHR predicted subsequent rates

of cognitive decline.

In our extensively characterized Discovery Cohort participants, who have been followed for

an average of 3.5 years after plasma sampling, cross-sectional analyses revealed minimal associ-

ation between plasma biomarker levels and baseline cognitive scores on the multidomain

DRS, which has been used extensively for cognitive assessment in PD [31] (Fig 4D). However,

plasma levels of GHR, ACY1, and OMD predicted subsequent rates of cognitive change on the

DRS in mixed-effects linear models adjusting for age, sex, disease duration, and baseline DRS

score, with time-by-protein interaction coefficients of 0.0905 (GHR, FDR-corrected p =

8.72 × 10−6), 0.0478 (ACY1, FDR-corrected p = 2.574 × 10−2), and −0.0457 (OMD, FDR-cor-

rected p = 2.574 × 10−2), respectively. Moreover, individuals with baseline levels of GHR and

ACY1 in the lowest tertile were significantly more likely to clinically progress to MCI or

dementia in Cox proportional hazards analyses adjusting for age, sex, and disease duration

(hazard ratio [HR] 2.27 [95% CI 1.04–5.0, p = 0.04] for GHR [Fig 4E and 4F], and HR 3.0

[95% CI 1.24–7.0, p = 0.014] for ACY1 [S3 Fig]). Finally, correcting for education in our mod-

els did not affect our results (S6 Table, S3 Fig).

The PDBP Replication Cohort is less mature in follow-up than our Discovery Cohort. In

addition, cognitive testing data are more limited, with variability among PDBP sites with

respect to their collection of cognitive data and stage of PD. These limitations notwithstanding,

scores on the MoCA were obtained at 6-month intervals for an average 2.8-year follow-up

period for 74 PD individuals from the PDBP Replication Cohort, followed at UTSW. In these

participants, we classified each individual as having normal cognition, MCI, or dementia for

each time point according to published norms for the MoCA [26]. Using the same Cox pro-

portional hazards models (i.e., adjusted for age, sex, and disease duration) as in the Discovery

Cohort, we found that individuals with baseline levels of GHR in the lowest tertile were more

likely to progress to MoCA scores in the MCI or dementia range (HR 3.6 [95% CI 1.20–11.1,

p = 0.02]) in the Replication Cohort as well (Fig 4G and 4H). Moreover, just as in the Discov-

ery Cohort, additional correction for education in our model did not affect results (S4 Fig).
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Fig 4. Top biomarkers are robust and predict cognitive trajectory. (A) Volcano plot showing the effect of dopaminergic therapy

on plasma protein levels, tested in 10 PD individuals, comparing ON versus OFF medication state in the same individuals.

Nominally significant differences in ON versus OFF state were found for only two proteins (paired t test nominal p< 0.01), and

none of our four top biomarker proteins was affected substantially. (B-C) Effect of plasma handling (samples compared with versus

without a 30-minute RT incubation followed by an extra freeze–thaw cycle) in two reference pools. Plasma handling caused

substantial changes in levels of some proteins, but none of our four top biomarkers was affected. (D) Cross-sectional relationship

between PD biomarker measures (log10 of RFU) and baseline cognitive function as measured by DRS score (Spearman’s correlation,
�FDR-adjusted p< 0.05). (E-H) Cox proportional hazards analyses investigating differences in subsequent rates of clinical

conversion to MCI or dementia, stratified by GHR measures at baseline in the Discovery Cohort (tertiles shown, panels E,F) and the
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Discussion

In this study, we investigated multiple cohorts in a discovery–replication design to develop

novel PD biomarkers, starting from an unbiased screen of approximately 1,000 plasma pro-

teins. We found four top biomarker candidates—ACY1, BSP, GHR, and OMD—that repli-

cated across a single-site Discovery Cohort and a multisite Replication Cohort, were robust to

common sources of preanalytical variability, and did not differ in paired samples from PD par-

ticipants on versus off dopaminergic medication. In analyses of longitudinal data, we showed

that baseline levels of ACY1 and GHR—and, to a lesser extent, OMD—associated with subse-

quent rates of cognitive decline in our Discovery Cohort, with baseline GHR predicting subse-

quent cognitive course in the Replication Cohort as well.

The PD biomarkers found here have not, to our knowledge, been previously reported in the

neurodegenerative disease literature. However, unbiased screens—most commonly exempli-

fied by the genome-wide association study in human genetics—often yield unexpected new

directions for investigation [6]. We note, however, that GHR and insulin-like growth factor

(IGF-1, a well-known effector produced in response to growth hormone [GH]-GHR signal-

ing), are expressed in the brain [32,33] and have been implicated in both physiological and

pathological events in the brain. GH-GHR-IGF-1 signaling has been implicated in neural stem

cell differentiation and proliferation during embryonic development [33–35], adult neurogen-

esis in rodents [36,37], age-related cognitive decline [38,39], and neuroprotection against neu-

rological insults such as hypoxic-ischemic injury [40,41], pointing toward potential links

between this pathway and protection from neurodegeneration. Future studies using mendelian

randomization techniques [42] or manipulation of biomarker levels in model systems are

needed, however, to truly elucidate potential mechanisms leading to the biomarker signatures

described here.

Strengths of this study include attention to reproducibility, as well as consideration of real-

world factors that influence downstream translational potential. With respect to reproducibil-

ity, we highlight four aspects. First, the ranking of top candidate proteins from the Discovery

Cohort by Stability Selection, rather than strict ordering by p-value, guards against concerns

regarding overfitting. Second, biomarkers described here had FDR-corrected p-values < 0.05

in both the single-site Discovery and multisite PDBP Replication Cohorts, attesting to the

robustness of our findings. Third, the analysis strategy in the Replication Cohort was prespeci-

fied to mirror that of the Discovery Cohort, with only two differences: (1) the inclusion of site

and batch as additional covariates, justified by the move from single-site/single-batch to multi-

site/multibatch phases of analysis, and (2) the removal of LEDD as a covariate, necessitated by

lack of these data uniformly across all Replication Cohort participants. Fourth, we note that

baseline levels of GHR, ACY1, and, to a lesser extent, OMD predicted future cognitive decline

in individuals with PD from the Discovery Cohort. Moreover, despite differences in cognitive

scale and clinical site used, as well as stage of PD assessed (all factors known to affect measures

of cognition over time), lower levels of GHR also predicted faster cognitive decline in the

Replication Cohort (tertiles shown, panels G,H). For the Replication Cohort, cognitive assignments were based on published norms

for the MoCA, longitudinally assessed at the UTSW site. (E,G) Cox regression curves showing adjusted trajectories for each tertile of

baseline GHR measures in each cohort. (F,H) Forest plots depicting hazard ratios for groups as defined by tertile of biomarker

measures at baseline, sex, age, and disease duration. ��p< 0.01. ACY1, aminoacylase-1; BSP, bone sialoprotein; DRS, Mattis

Dementia Rating Scale-2; FDR, false discovery rate; GHR, growth hormone receptor; IGFBP-1, insulin-like growth factor binding

protein 1; MCI, mild cognitive impairment; MoCA, Montreal Cognitive Assessment; OMD, osteomodulin; PCSK9, proprotein

convertase subtilisin/kexin type 9; PD, Parkinson’s disease; PDBP, Parkinson’s Disease Biomarker Program; RFU, relative

fluorescence unit; RT, room temperature; UPenn, University of Pennsylvania; UTSW, University of Texas Southwestern Medical

Center.

https://doi.org/10.1371/journal.pmed.1002931.g004

Characterization of Parkinson’s disease using blood-based biomarkers

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002931 October 11, 2019 15 / 22

https://doi.org/10.1371/journal.pmed.1002931.g004
https://doi.org/10.1371/journal.pmed.1002931


Replication Cohort. Aside from meeting a clear need for biomarkers predicting PD progres-

sion [7], the association of the same proteins with disease class as well as disease progression

increases confidence in these biomarker candidates, since the gradation of levels within PD

according to one measure of pathophysiological severity (rate of cognitive decline) suggests

that the differences between PD and NC are not due to a hidden confounding variable differ-

entiating these two groups. With respect to downstream translational considerations, we inves-

tigated aspects of real-world variability, demonstrating that all four top biomarkers reported

here are not substantially affected by dopaminergic medication state or common sources of

noise related to sample handling. We also emphasize the fact that our biomarker candidates

are measured from the blood plasma, allowing for collection in any routine phlebotomy

setting.

Our study also has limitations. First, our study relies on an aptamer-based platform [9] for

plasma protein measures. Although this is a powerful approach for large-scale screening,

downstream translation will likely require development of alternative protein assays that

(1) yield absolute protein quantities rather than the RFUs analyzed here and (2) confirm assay

specificity. Second, although we have adjusted for dopaminergic medication effects where pos-

sible and directly analyzed the effect of dopaminergic medication state on protein measures,

our study cannot rule out small effects of dopaminergic medication on candidate protein mea-

sures, since overnight washout of dopaminergic medication does not fully mitigate medication

effects. Thus, evaluation of candidate protein biomarkers in unmedicated early symptomatic

or even presymptomatic, high-risk cohorts is a fruitful future avenue. Third, although we have

demonstrated that plasma levels of ACY1, GHR, and OMD are to some extent specific to PD,

in that they are not similarly changed in ALS, it is still possible that some of these protein bio-

markers may show similar changes in other neurodegenerative diseases that were not tested.

We note, however, that increasing appreciation for the overlap of pathology across various

neurodegenerative diseases—individuals with PD, for example, are highly likely to have

concomitant Alzheimer’s disease (AD) neuropathology at autopsy [43]—suggests that overlap

in biomarkers across current clinical categories may reflect overlap in pathophysiological

mechanism, rather than a poor biomarker. Fourth, for our longitudinal analyses, we assessed

cognitive change in order to understand whether candidate biomarkers predicted disease

progression. We chose to investigate cognitive decline both because of the major morbidity

associated with this aspect of disease progression and because cognition is not as affected by

dopaminergic medication as motor performance. Because the majority of PD participants

studied here were assessed while taking dopaminergic medication, motor performance would

be expected to reflect not only underlying disease state over time (what we aim to measure)

but also medication response and timing of most recent dose of medication, adding consider-

able noise. Thus, although our study found that several of these candidate biomarkers may pre-

dict disease progression along one axis (cognitive decline), whether they also predict motor

progression is an open question—one that might also be answered by future study in early

symptomatic PD individuals not yet taking dopaminergic medication.

In summary, we present our findings from unbiased screening of>1,000 plasma proteins

in multiple PD cohorts (a single-site Discovery Cohort, the multicenter PDBP Replication

Cohort, and the multicenter BioFIND Cohort), as well as disease and normal controls. In par-

ticular, we have identified four plasma proteins—BSP, OMD, ACY1, and GHR—with consis-

tent alterations in PD, one of which (GHR) also predicted subsequent cognitive decline in

multiple cohorts, across multiple cognitive testing instruments. Our results open up new ave-

nues for mechanistic investigation, suggesting that "near-proteomic" profiling of blood from

individuals with PD may be a powerful approach both for the development of clinical tools

and for insight into the pathophysiology of this currently incurable disease.
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Supporting information

S1 Fig. QC measures. (A) Discovery Cohort Venn diagram shows the number of proteins that

passed QC filters (968 proteins) and number of proteins that failed one or both of the QC crite-

ria. Out of a total of 1,129 proteins, 161 were excluded because of high CVs (>20%) or high

proportions (>25%) of measurements outside the assay’s limits of detection. (B) Replication

Cohort Venn diagram shows that 33 proteins were removed because of CV greater than 20%,

leaving a total of 1,272 proteins for downstream analyses. CV, coefficient of variation; QC,

quality control.

(TIF)

S2 Fig. Effect of levodopa therapy on plasma protein levels tested by paired permutation

test. Volcano plot showing the effect of dopaminergic therapy on plasma protein levels, tested

in 10 PD individuals, comparing ON versus OFF medication state in the same individuals.

Nominally significant differences in ON versus OFF state were found for only one protein

(paired permutation test nominal p< 0.01). PD, Parkinson’s disease.

(TIF)

S3 Fig. Plasma levels of GHR and ACY1 predict cognitive decline in individuals with PD

from Discovery Cohort. Differences in subsequent rates of clinical conversion to MCI or

dementia in the Discovery Cohort stratified by GHR or ACY1 levels at baseline (shown as

tertiles) are unaffected by education. (A,C,E) Cox regression curves showing adjusted trajecto-

ries for each tertile of baseline biomarker measures and (B,D,F) forest plots depicting hazard

ratios for groups as defined by tertile of biomarker measures at baseline and covariates. (A,B)

Results for ACY1 without adjusting for education. (C-F) Results for Cox proportional hazards

analyses adjusting for education for GHR (C-D) and ACY1 (E-F), respectively. (G) Results

from ANOVA (χ2 statistic, p-value) comparing Cox proportional hazards model with educa-

tion (model 2) and without education (model 1). ACY1, aminoacylase-1; GHR, growth hor-

mone receptor; MCI, mild cognitive impairment; PD, Parkinson’s disease.

(TIF)

S4 Fig. Plasma levels of GHR predict cognitive decline in individuals with PD from Repli-

cation Cohort. Differences in subsequent rates of clinical conversion to MCI or dementia in

the Replication (UTSW) Cohort stratified by GHR levels at baseline (shown as tertiles) are

unaffected by education. (A) Cox regression curve showing adjusted trajectories for each ter-

tile of baseline GHR measures and (B) forest plots depicting hazard ratios for groups as defined

by GHR tertile, sex, age, disease duration, and the additional covariate of education. (C)

Results from ANOVA (χ2 statistic and p-value) comparing Cox proportional hazards model

with education (model 2) and without (model 1). GHR, growth hormone receptor; MCI, mild

cognitive impairment; PD, Parkinson’s disease; UTSW, University of Texas Southwestern

Medical Center.

(TIF)

S1 Table. SOMAScan levels (log10 of RFU) of 1,129 proteins, and demographic data for

141 participants (96 PD and 45 NC) from Discovery (Udall) cohort. Proteins showing coef-

ficient of variation greater than 20%, and more than 25% of measurements outside either the

LLOD or ULOD were excluded form downstream analyses. Out of 1,129 proteins, 161 were

excluded. LEDD, levodopa equivalent daily dose; LLOD, lower limit of detection; NC, neuro-

logically normal control; PD, Parkinson’s disease; RFU, relative fluorescence unit; ULOD,

upper limit of detection.

(XLSX)
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S2 Table. Candidate PD biomarkers from Discovery Cohort analysis (140 proteins). Pro-

teins that differentiated PD and NC individuals (p< 0.005) were identified by applying a mul-

tivariate linear regression model to the Discovery Cohort data (96 PD and 45 NC). Protein

names, ENTREZ symbols, p-value from regression model (differentiating PD versus NC status,

adjusted for age at plasma sampling, sex, and LEDD), and direction of change in PD compared

to NC are shown. p-Value from regression model differentiating PD and NC group adjusted

for age at plasma collection, sex, and the LEDD. FDR = Benjamini-Hochberg adjusted p-value,

968 tests. FDR, false discovery rate; LEDD, levodopa equivalent daily dose; NC, neurologically

normal control; PD, Parkinson’s disease.

(XLSX)

S3 Table. SOMAScan levels (log10 of RFU) of 1,305 proteins and demographic data for 376

research participants (59 ALS, 215 PD, and 102 NC) from Replication Cohort. Three

outlier individuals and 33 proteins showing coefficient of variation greater than 20% were

excluded from analyses. ALS, amyotrophic lateral sclerosis; NC, neurologically normal control;

PD, Parkinson’s disease; RFU, relative fluorescence unit.

(XLSX)

S4 Table. Multiple regression FDR-adjusted p-values for top 10 proteins in Discovery and

Replication Cohort. Top 10 plasma biomarker candidates (ranked by Stability Selection) that

differentiated PD participants versus NC participants in the Discovery Cohort; four replicate

associations in the Replication Cohort. Here, we report p-values from multiple linear regres-

sion model differentiating PD versus NC status, adjusted for age at plasma sampling, sex, and

LEDD in Discovery Cohort. In the Replication Cohort, the effect of treatment group (PD ver-

sus NC) was adjusted for age at plasma sampling, sex, clinical site, and batch effect. Adjust-

ment for the FDR was performed using the Benjamini-Hochberg method. FDR, false

discovery rate; LEDD, levodopa equivalent daily dose; NC, neurologically normal control; PD,

Parkinson’s disease.

(DOCX)

S5 Table. Change in protein levels in ON versus OFF dopaminergic state, and after system-

atic perturbation of samples of extra freeze–thaw and prolonged (30 minutes) room tem-

perature exposure. For ON versus OFF analysis, plasma samples were collected during ON–

OFF state for each of the 10 PD participants (5 females and 5 males of age>50 years) ran-

domly selected from the BioFIND database. Percentage of change of raw RFUs and log10(RFU)

differences between ON and OFF state are shown for 1,272 proteins. Only two proteins

(IGFBP-1 and PCSK9) significantly differentiated ON versus OFF dopaminergic state.
��Paired t test nominal p-value < 0.01, two-tailed. IGFBP-1, insulin-like growth factor binding

protein 1; PCSK9, proprotein convertase subtilisin/kexin type 9; PD, Parkinson’s disease;

RFU, relative fluorescence unit.

(XLSX)

S6 Table. Results from mixed-effects linear models in Discovery Cohort. For our first

model (model 1), the response variable DRS was modeled as a fixed effect of time–protein

interaction, age, sex, disease duration, and baseline DRS and as a random effect of partici-

pant. Model 2 adjusts for education by including it as an additional fixed effect. Shown are

time–protein interaction coefficients (βtime�prot) and their corresponding FDR-adjusted p-val-

ues for model 1 and model 2. DRS, Mattis Dementia Rating Scale-2; FDR, false discovery

rate.

(DOCX)
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22. Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc Ser B Stat Methodol. 2010; 72(4):417–

73.

23. Tibshirani R. Regression shrinkage and selection via the lasso: A retrospective. J R Stat Soc Ser B Stat

Methodol. 2011; 73(3):273–82.

24. Wehrens R, Franceschi P. Meta-Statistics for Variable Selection: The R Package BioMark. J Stat

Softw. 2012; 51(10):1–18.

25. Pinheiro J, Bates D, DebRoy S. SD and RCT. _nlme: Linear and Nonlinear Mixed Effects Models_. R

package version 3.1–137. 2018. https://CRAN.R-project.org/package=nlme [cited 2018 Oct 14].

26. Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, et al. The MoCA.

Neurology. 2010; 75(19):1717–1725. https://doi.org/10.1212/WNL.0b013e3181fc29c9 PMID:

21060094

27. Therneau T. A Package for Survival Analysis in S. version 2.38. 2015. https://CRAN.R-project.org/

package=survival [cited 2018 Oct 14].

28. Kassambara A. survminer: Drawing Survival Curves using “ggplot2”. R package version 0.4.2. 2018.

https://CRAN.R-project.org/package=survminer [cited 2018 Sep 16].

29. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equiv-

alency reporting in Parkinson’s disease. Mov Disord. 2010; 25(15):2649–53. https://doi.org/10.1002/

mds.23429 PMID: 21069833

30. Reid WGJ, Hely MA, Morris JGL, Loy C, Halliday GM. Dementia in Parkinson’s disease: A 20-year

neuropsychological study (Sydney multicentre study). J Neurol Neurosurg Psychiatry. 2011; 82

(9):1033–7. https://doi.org/10.1136/jnnp.2010.232678 PMID: 21335570

31. Llebaria G, Pagonabarraga J, Kulisevsky J, Garcı́a-Sánchez C, Pascual-Sedano B, Gironell A et al.

Cut-off score of the Mattis Dementia Rating Scale for screening dementia in Parkinson’s disease. Mov

Disord. 2008; 23(11):1546–50. https://doi.org/10.1002/mds.22173 PMID: 18546326

32. Castro J, Costoya J, Señarı́s R, Arce V, Prieto A, Gallego R. Expression of growth hormone receptor in

the human brain. Neurosci Lett. 2002; 281(2–3):147–50.

33. Ajo R, Sánchez-Franco F, Navarro C, Cacicedo L. Growth Hormone Action on Proliferation and Differ-

entiation of Cerebral Cortical Cells from Fetal Rat. Endocrinology. 2003; 144(3):1086–97. https://doi.

org/10.1210/en.2002-220667 PMID: 12586785

34. Turnley AM, Faux CH, Rietze RL, Coonan JR, Bartlett PF. Suppressor of cytokine signaling 2 regulates

neuronal differentiation by inhibiting growth hormone signaling. Nat Neurosci. 2002; 5:1155–1162.

https://doi.org/10.1038/nn954 PMID: 12368809

35. McLenachan S, Lum MG, Waters MJ, Turnley AM. Growth hormone promotes proliferation of adult neu-

rosphere cultures. Growth Horm IGF Res. 2009; 19(3):212–8. https://doi.org/10.1016/j.ghir.2008.09.

003 PMID: 18976947

36. Åberg ND, Johansson I, Åberg MAI, Lind J, Johansson UE, Cooper-Kuhn CM, et al. Peripheral adminis-

tration of GH induces cell proliferation in the brain of adult hypophysectomized rats. J Endocrinol. 2009;

201(1):141–50. https://doi.org/10.1677/JOE-08-0495 PMID: 19171566

37. Åberg ND, Lind J, Isgaard J, Kuhn HG. Peripheral growth hormone induces cell proliferation in the intact

adult rat brain. Growth Horm IGF Res. 2010; 20(3):264–9. https://doi.org/10.1016/j.ghir.2009.12.003

PMID: 20106687

38. Frater J, Lie D, Bartlett P, McGrath JJ. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive

decline in normal ageing: A review. Ageing Res Rev. 2018; 42:14–27. https://doi.org/10.1016/j.arr.

2017.12.002 PMID: 29233786

39. Muller AP, Fernandez AM, Haas C, Zimmer E, Portela LV, Torres-Aleman I. Reduced brain insulin-like

growth factor I function during aging. Mol Cell Neurosci. 2012; 49(1):9–12. https://doi.org/10.1016/j.

mcn.2011.07.008 PMID: 21807098

40. Christophidis LJ, Gorba T, Gustavsson M, Williams CE, Werther GA, Russo VC, et al. Growth hormone

receptor immunoreactivity is increased in the subventricular zone of juvenile rat brain after focal ische-

mia: A potential role for growth hormone in injury-induced neurogenesis. Growth Horm IGF Res. 2009;

19(6):497–506. https://doi.org/10.1016/j.ghir.2009.05.001 PMID: 19524466

41. Guo SZ, Raccurt M, Brittian KR, Moudilou E, Li RC, Morel G, et al. Exogenous growth hormone attenu-

ates cognitive deficits induced by intermittent hypoxia in rats. Neuroscience. 2011; 196:237–50. https://

doi.org/10.1016/j.neuroscience.2011.08.029 PMID: 21888951

Characterization of Parkinson’s disease using blood-based biomarkers

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002931 October 11, 2019 21 / 22

https://cran.r-project.org/package=gplots
https://CRAN.R-project.org/package=nlme
https://doi.org/10.1212/WNL.0b013e3181fc29c9
http://www.ncbi.nlm.nih.gov/pubmed/21060094
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survminer
https://doi.org/10.1002/mds.23429
https://doi.org/10.1002/mds.23429
http://www.ncbi.nlm.nih.gov/pubmed/21069833
https://doi.org/10.1136/jnnp.2010.232678
http://www.ncbi.nlm.nih.gov/pubmed/21335570
https://doi.org/10.1002/mds.22173
http://www.ncbi.nlm.nih.gov/pubmed/18546326
https://doi.org/10.1210/en.2002-220667
https://doi.org/10.1210/en.2002-220667
http://www.ncbi.nlm.nih.gov/pubmed/12586785
https://doi.org/10.1038/nn954
http://www.ncbi.nlm.nih.gov/pubmed/12368809
https://doi.org/10.1016/j.ghir.2008.09.003
https://doi.org/10.1016/j.ghir.2008.09.003
http://www.ncbi.nlm.nih.gov/pubmed/18976947
https://doi.org/10.1677/JOE-08-0495
http://www.ncbi.nlm.nih.gov/pubmed/19171566
https://doi.org/10.1016/j.ghir.2009.12.003
http://www.ncbi.nlm.nih.gov/pubmed/20106687
https://doi.org/10.1016/j.arr.2017.12.002
https://doi.org/10.1016/j.arr.2017.12.002
http://www.ncbi.nlm.nih.gov/pubmed/29233786
https://doi.org/10.1016/j.mcn.2011.07.008
https://doi.org/10.1016/j.mcn.2011.07.008
http://www.ncbi.nlm.nih.gov/pubmed/21807098
https://doi.org/10.1016/j.ghir.2009.05.001
http://www.ncbi.nlm.nih.gov/pubmed/19524466
https://doi.org/10.1016/j.neuroscience.2011.08.029
https://doi.org/10.1016/j.neuroscience.2011.08.029
http://www.ncbi.nlm.nih.gov/pubmed/21888951
https://doi.org/10.1371/journal.pmed.1002931


42. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemio-

logical studies. Hum Mol Genet. 2014; 23(R1):R89–98. https://doi.org/10.1093/hmg/ddu328 PMID:

25064373

43. Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, et al. Neurodegenerative disease con-

comitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018; 141(7):2181–

93. https://doi.org/10.1093/brain/awy146 PMID: 29878075

Characterization of Parkinson’s disease using blood-based biomarkers

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002931 October 11, 2019 22 / 22

https://doi.org/10.1093/hmg/ddu328
http://www.ncbi.nlm.nih.gov/pubmed/25064373
https://doi.org/10.1093/brain/awy146
http://www.ncbi.nlm.nih.gov/pubmed/29878075
https://doi.org/10.1371/journal.pmed.1002931

